Evaluating the performance of wearable devices for contact tracing in care home environments

J Occup Environ Hyg. 2023 Oct;20(10):468-479. doi: 10.1080/15459624.2023.2241522. Epub 2023 Sep 8.

Abstract

COVID-19 has had a devastating impact worldwide, including in care homes where there have been substantial numbers of cases among a very vulnerable population. A key mechanism for managing exposure to the virus and targeting interventions is contact tracing. Unfortunately, environments such as care homes that were most catastrophically impacted by COVID-19 are also those least amenable to traditional contact tracing. A promising alternative to recall and smartphone-based contact tracing approaches is the use of discrete wearable devices that exploit Bluetooth Low Energy (BLE) and Long-Range Wide Area Network (LoRaWAN) technologies. However, the real-world performance of these devices in the context of contact tracing is uncertain. A series of experiments were conducted to evaluate the performance of a wearables system that is based on BLE and LoRaWAN technologies. In each experiment, the number of successful contacts was recorded and the physical distance between two contacts was compared to a calculated distance using the Received Signal Strength Indication (RSSI) to determine the precision, error rate, and duration of proximity. The overall average system contact detection success rate was measured as 75.5%; when wearables were used as per the manufacturer's guidelines the contact detection success rate increased to 81.5%, but when obstructed by everyday objects such as clothing or inside a bag the contact detection success rate was only 64.2%. The calculated distance using RSSI was close to the physical distance in the absence of obstacles. However, in the presence of typical obstacles found in care home settings, the reliability of detection decreased, and the calculated distance usually appeared far from the actual contact point. The results suggest that under real-world conditions there may be a large proportion of contacts that are underestimated or undetected.

Keywords: Bluetooth; COVID-19; LoRaWAN; digital devices; sensors; wearables.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / epidemiology
  • COVID-19* / prevention & control
  • Contact Tracing / methods
  • Home Environment
  • Humans
  • Reproducibility of Results
  • Wearable Electronic Devices*