Background: Anaplastic lymphoma kinase (ALK) plays a role in the development of lymphoma, lung cancer and neuroblastoma. While tyrosine kinase inhibitors (TKIs) have improved treatment outcomes, relapse remains a challenge due to on-target mutations and off-target resistance mechanisms. ALK-positive (ALK+) tumors can evade the immune system, partly through tumor-associated macrophages (TAMs) that facilitate immune escape. Cancer cells use "don't eat me" signals (DEMs), such as CD47, to resist TAMs-mediated phagocytosis. TKIs may upregulate pro-phagocytic stimuli (i.e., calreticulin, CALR), suggesting a potential therapeutic benefit in combining TKIs with an anti-CD47 monoclonal antibody (mAb). However, the impact of this combination on both TKIs-sensitive and resistant ALK+ tumors requires further investigation.
Methods: A panel of TKIs-sensitive and resistant ALK+ cancer subtypes was assessed for CALR and CD47 expression over time using flow cytometry. Flow cytometry co-culture and fluorescent microscopy assays were employed to evaluate phagocytosis under various treatment conditions.
Results: ALK inhibitors increased CALR expression in both TKIs-sensitive and off-target resistant ALK+ cancer cells. Prolonged TKIs exposure also led to CD47 upregulation. The combination of ALK inhibitors and anti-CD47 mAb significantly enhanced phagocytosis compared to anti-CD47 alone, as confirmed by flow cytometry and fluorescent microscopy.
Conclusions: Anti-CD47 mAb can quench DEMs while exposing pro-phagocytic signals, promoting tumor cell phagocytosis. ALK inhibitors induced immunogenic cell damage by upregulating CALR in both sensitive and off-target resistant tumors. Continuous TKIs exposure in off-target resistant settings also resulted in the upregulation of CD47 over time. Combining TKIs with a CD47 blockade may offer therapeutic benefits in ALK+ cancers, especially in overcoming off-target resistance where TKIs alone are less effective.
Keywords: ALK; CD47; NSCLC; TKIs (tyrosine kinase inhibitors); lymphoma; macrophages; neuroblastoma; tumor immunology; tumor microenvironment (TME).