The Genetic Characteristics of FT-MIRS-Predicted Milk Fatty Acids in Chinese Holstein Cows

Animals (Basel). 2024 Oct 8;14(19):2901. doi: 10.3390/ani14192901.

Abstract

Fourier Transform Mid-Infrared Spectroscopy (FT-MIRS) can be used for quantitative detection of milk components. Here, milk samples of 458 Chinese Holstein cows from 11 provinces in China were collected and we established a total of 22 quantitative prediction models in milk fatty acids by FT-MIRS. The coefficient of determination of the validation set ranged from 0.59 (C18:0) to 0.76 (C4:0). The models were adopted to predict the milk fatty acids from 2138 cows and a new high-throughput computing software HiBLUP was employed to construct a multi-trait model to estimate and analyze genetic parameters in dairy cows. Finally, genome-wide association analysis was performed and seven novel SNPs significantly associated with fatty acid content were selected, investigated, and verified with the FarmCPU method, which stands for "Fixed and random model Circulating Probability Unification". The findings of this study lay a foundation and offer technical support for the study of fatty acid trait breeding and the screening and grouping of characteristic dairy cows in China with rich, high-quality fatty acids. It is hoped that in the future, the method established in this study will be able to screen milk sources rich in high-quality fatty acids.

Keywords: Fourier Transform Mid-Infrared Spectroscopy (FT-MIRS); fatty acid content; genetic characteristics; genome-wide association study; milk.