Solar-Driven Evaporator With "Starburst Turbine" Design Featuring Directional Salt Crystallization, Antibacterial, and Catalytic Multifunctionality for Efficient Water Purification

Adv Sci (Weinh). 2024 Nov;11(43):e2406696. doi: 10.1002/advs.202406696. Epub 2024 Sep 25.

Abstract

Facing the global challenge of water scarcity, solar-driven desalination is considered a sustainable technology for obtaining freshwater from seawater. However, issues such as uncontrolled salt crystallization and bacterial contamination limit its efficiency and practicality. This study proposes an innovative solar-driven evaporator designed to address these challenges using optimized shape design and advanced photothermal materials. Based on finite element analyses, cylindrical evaporators with a "Starburst Turbine" shape are designed and fabricated, achieving directional salt crystallization and a record-breaking water collection rate of 3.56 kg m-2 h-1 and an evaporation rate of 4.57 kg m-2 h-1 under one sun illumination. During continuous 60-h illumination tests, the evaporator maintained a stable evaporation rate, attributed to its excellent directional salt crystallization capability. Additionally, the evaporator demonstrates superior photodynamic antibacterial performance and photocatalytic degradation of organic pollutants. Under one sun illumination for 1 h, it achieves 100% sterilization of S. aureus and E. coli, and a 95.4% degradation of methylene blue (MB), demonstrating its potential to purify various wastewater types. These findings underscore the significant scientific and practical value of integrating antibacterial and photocatalytic functions into solar water purification materials, providing a sustainable solution to global water scarcity challenges and environmental protection.

Keywords: directional salt crystallization; multifunctional; shape design; solar‐driven evaporator.

MeSH terms

  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Catalysis
  • Crystallization*
  • Equipment Design
  • Escherichia coli / drug effects
  • Salts / chemistry
  • Staphylococcus aureus / drug effects
  • Sunlight*
  • Water Purification* / methods

Substances

  • Anti-Bacterial Agents
  • Salts