Gastric cancer is the fifth most common malignancy and the third most deadly tumor in the world. Zinc finger protein 479 (ZNF479) has been demonstrated to play crucial roles in hepatocellular carcinoma. However, the function of ZNF479 in gastric cancer remains to be clarified. The current study aimed to investigate the role of ZNF479 in gastric cancer progression and elucidate the potential molecular mechanism. In this study, Cell Count Kit-8 and colony formation assays demonstrated that knockdown of ZNF479 inhibited cell proliferation in AGS and SGC-7901 cells. Of note, knockdown of ZNF479 hinders tumor growth of xenograft tumor mice. What is more, knockdown of ZNF479 inhibited glucose uptake, lactate production, adenosine triphosphate level, and extracellular acidification ratio; increased oxygen consumption ratio in gastric cancer cells; and decreased the expression of glycolytic proteins both in vitro and in vivo. Furthermore, analysis mechanism suggests that ZNF479 participated in the regulation of gastric cancer progression through affecting the β-catenin/c-Myc signaling pathway. Collectively, ZNF479 plays a role as an oncogene through modulating β-catenin/c-Myc signaling pathway in the development of gastric cancer, which provides a new research target for future studies.
Keywords: ZNF479; c-Myc; gastric cancer; glycolysis; proliferation.
© 2021 The Authors. The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia on behalf of Kaohsiung Medical University.