Background and purpose: Many pain-triggering nociceptor neurons express TRPV1 or TRPA1, cation-selective channels with large pores that enable permeation of QX-314, a cationic analogue of lidocaine. Co-application of QX-314 with TRPV1 or TRPA1 activators can silence nociceptors. In this study, we describe BW-031, a novel more potent cationic sodium channel inhibitor, and test whether its application alone can inhibit pain associated with tissue inflammation and whether this strategy can also inhibit cough.
Experimental approach: We tested the ability of BW-031 to inhibit pain in three models of tissue inflammation:- inflammation in rat paws produced by complete Freund's adjuvant or by surgical incision and a mouse ultraviolet (UV) burn model. We tested the ability of BW-031 to inhibit cough induced by inhalation of dilute citric acid in guinea pigs.
Key results: BW-031 inhibited Nav 1.7 and Nav 1.1 channels with approximately sixfold greater potency than QX-314 when introduced inside cells. BW-031 inhibited inflammatory pain in all three models tested, producing more effective and longer-lasting inhibition of pain than QX-314 in the mouse UV burn model. BW-031 was effective in reducing cough counts by 78%-90% when applied intratracheally under isoflurane anaesthesia or by aerosol inhalation in guinea pigs with airway inflammation produced by ovalbumin sensitization.
Conclusion and implications: BW-031 is a novel cationic sodium channel inhibitor that can be applied locally as a single agent to inhibit inflammatory pain. BW-031 can also effectively inhibit cough in a guinea pig model of citric acid-induced cough, suggesting a new clinical approach to treating cough.
Keywords: QX-314; TRPV1; cough; local anesthetic; nociceptor; pain; sodium channel.
© 2021 The British Pharmacological Society.