Background: The bioactive peptide endothelin-1 is elevated during and after cardiopulmonary bypass and exerts cardiovascular effects through its 2 receptor subtypes, endothelin-1A and endothelin-1B. Increased endothelin-1A receptor stimulation after cardiopulmonary bypass can cause increased pulmonary vascular resistance and modulate myocardial contractility. However, whether and to what degree selective endothelin-1A blockade influences these parameters in the postbypass setting is not completely understood.
Objectives: Our objective was to measure left ventricular function and hemodynamics in a porcine model of cardiopulmonary bypass after selective blockade of endothelin-1A.
Methods: Adult pigs (n = 23) underwent 90 minutes of cardiopulmonary bypass and were randomized 30 minutes after bypass to receive a selective endothelin-1A antagonist (TBC 11251, 10 mg/kg; n = 13) or saline vehicle (n = 10).
Results: After bypass and before randomization, pulmonary vascular resistance rose nearly 4-fold, and left ventricular preload recruitable stroke work fell to one third of baseline values (both P <.05). In the vehicle group pulmonary vascular resistance continued to rise, and preload recruitable stroke work remained reduced. However, after endothelin-1A blockade, the rise in pulmonary vascular resistance was significantly blunted compared with that in the vehicle group. Moreover, the reduction in pulmonary vascular resistance with endothelin-1A blockade was achieved without a significant change in systemic perfusion pressures.
Conclusions: The present study demonstrated that increased activity of the endothelin-1A receptor likely contributes to alterations in pulmonary vascular resistance in the postbypass setting. Selective endothelin-1A blockade may provide a means to selectively decrease pulmonary vascular resistance without significant effects on systemic hemodynamics.