Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [(18)F]fluorodeoxyglucose ([(18)F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [(18)F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [(18)F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8(+) T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen-presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients.
Keywords: Allograft rejection; PET; T cell depletion; T lymphocyte activation; lung transplantation.
© Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.