Environmental DNA (eDNA) extracted from the gut contents of filter feeders can be used to identify biodiversity in aquatic ecosystems. In this study, we used eDNA from the gut contents of the Asian clam Corbicula fluminea to examine biodiversity within estuarine ecosystem. Field sampling was conducted at three points in the Nakdong River Estuary, which is characterised by closed estuarine features resulting from the presence of an estuarine barrage. The collected C. fluminea samples were dissected to separate the gut contents, and the extracted eDNA was amplified using 18S V9 primer targeting all eukaryote-derived DNA. The amplified DNA was sequenced using a next-generation sequencing (NGS) technique, and a BLASTn search was performed based on the National Centre for Biotechnology Information (NCBI) database for taxa identification. We obtained 23 unique operational taxonomic units (OTUs), including fish (approximately 8.70%), copepods (approximately 17.39%), and green algae (approximately 21.74%), representing a wide range of habitats. Furthermore, 8 out of the 20 families were identified through comparisons with reference data from conventional field surveys, and the OTUs of elusive migratory fish were detected. The results support the application of C. fluminea as an eDNA sampler for supplementary biodiversity monitoring.
Keywords: 18S V9; Corbicula fluminea; conventional field survey; eDNA metabarcoding; next-generation sequencing.