2 km Uncompressed HD Video Wireless Transmission at 100 GHz Based on All-Optical Frequency Up- and Down-Conversion

Micromachines (Basel). 2024 Dec 11;15(12):1488. doi: 10.3390/mi15121488.

Abstract

The millimeter-wave wireless transmission system is widely regarded as a promising solution for applications of future 6G communication. This paper presents an experimental comparison between all-optical and all-electric receivers for millimeter-wave communication systems over a 15 m wireless link and demonstrates 200 m and 2 km real-time uncompressed HD video transmission using an all-optical transceiver at 100 GHz. The systems leverage photonics-assisted heterodyne beating techniques at the transmitter, while the receivers employ either an avalanche photodiode (APD)-based all-optical approach or an envelope detection-based all-electric approach. Experimental results show that the all-optical transceiver supports significantly higher transmission rates, achieving error-free transmission at up to 11.318 Gbps over a 200 m wireless link without clock recovery, compared to the all-electric receiver, which is limited to only 3.125 Gbps error-free 15 m transmission. This work proves that the proposed system based on the all-optical receiver is more promising for supporting future 6G scenarios requiring ultra-wideband, high capacity, and wide coverage high-speed wireless communications.

Keywords: all-optical transceiver; millimeter-wave; uncompressed HD video transmission.