Background: Clinical prediction models to classify lung nodules often exclude patients with mediastinal/hilar lymphadenopathy, although the presence of mediastinal/hilar lymphadenopathy does not always indicate malignancy. Herein, we developed and validated a multimodal prediction model for lung nodules in which patients with mediastinal/hilar lymphadenopathy were included.
Methods: A single-center retrospective study was conducted. We developed and validated a logistic regression model including patients with mediastinal/hilar lymphadenopathy. Discrimination of the model was assessed by area under the operating curve. Goodness of fit test was performed via the Hosmer-Lemeshow test, and a nomogram of the logistic regression model was drawn.
Results: There were 311 cases included in the final analysis. A logistic regression model was developed and validated. There were nine independent variables included in the model. The aera under the curve (AUC) of the validation set was 0.91 (95% confidence interval [CI]: 0.85-0.98). In the validation set with mediastinal/hilar lymphadenopathy, the AUC was 0.95 (95% CI: 0.90-0.99). The goodness-of-fit test was 0.22.
Conclusions: We developed and validated a multimodal risk prediction model for lung nodules with excellent discrimination and calibration, regardless of mediastinal/hilar lymphadenopathy. This broadens the application of lung nodule prediction models. Furthermore, mediastinal/hilar lymphadenopathy added value for predicting lung nodule malignancy in clinical practice.
Keywords: Nomogram; lung nodule; mediastinal/hilar lymphadenopathy; prediction model.
© 2022 Wiley Periodicals LLC.