Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

30 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Explainable 3D CNN based on baseline breast DCE-MRI to give an early prediction of pathological complete response to neoadjuvant chemotherapy.
Comes MC, Fanizzi A, Bove S, Didonna V, Diotiaiuti S, Fadda F, La Forgia D, Giotta F, Latorre A, Nardone A, Palmiotti G, Ressa CM, Rinaldi L, Rizzo A, Talienti T, Tamborra P, Zito A, Lorusso V, Massafra R. Comes MC, et al. Among authors: didonna v. Comput Biol Med. 2024 Apr;172:108132. doi: 10.1016/j.compbiomed.2024.108132. Epub 2024 Mar 14. Comput Biol Med. 2024. PMID: 38508058 Free article.
Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs.
Comes MC, La Forgia D, Didonna V, Fanizzi A, Giotta F, Latorre A, Martinelli E, Mencattini A, Paradiso AV, Tamborra P, Terenzio A, Zito A, Lorusso V, Massafra R. Comes MC, et al. Among authors: didonna v. Cancers (Basel). 2021 May 11;13(10):2298. doi: 10.3390/cancers13102298. Cancers (Basel). 2021. PMID: 34064923 Free PMC article.
Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy.
Massafra R, Comes MC, Bove S, Didonna V, Gatta G, Giotta F, Fanizzi A, La Forgia D, Latorre A, Pastena MI, Pomarico D, Rinaldi L, Tamborra P, Zito A, Lorusso V, Paradiso AV. Massafra R, et al. Among authors: didonna v. J Pers Med. 2022 Jun 10;12(6):953. doi: 10.3390/jpm12060953. J Pers Med. 2022. PMID: 35743737 Free PMC article.
A Gradient-Based Approach for Breast DCE-MRI Analysis.
Losurdo L, Basile TMA, Fanizzi A, Bellotti R, Bottigli U, Carbonara R, Dentamaro R, Diacono D, Didonna V, Lombardi A, Giotta F, Guaragnella C, Mangia A, Massafra R, Tamborra P, Tangaro S, La Forgia D. Losurdo L, et al. Among authors: didonna v. Biomed Res Int. 2018 May 16;2018:9032408. doi: 10.1155/2018/9032408. eCollection 2018. Biomed Res Int. 2018. PMID: 30140703 Free PMC article.
A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results.
Massafra R, Latorre A, Fanizzi A, Bellotti R, Didonna V, Giotta F, La Forgia D, Nardone A, Pastena M, Ressa CM, Rinaldi L, Russo AOM, Tamborra P, Tangaro S, Zito A, Lorusso V. Massafra R, et al. Among authors: didonna v. Front Oncol. 2021 Mar 11;11:576007. doi: 10.3389/fonc.2021.576007. eCollection 2021. Front Oncol. 2021. PMID: 33777733 Free PMC article.
A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients.
Bove S, Comes MC, Lorusso V, Cristofaro C, Didonna V, Gatta G, Giotta F, La Forgia D, Latorre A, Pastena MI, Petruzzellis N, Pomarico D, Rinaldi L, Tamborra P, Zito A, Fanizzi A, Massafra R. Bove S, et al. Among authors: didonna v. Sci Rep. 2022 May 12;12(1):7914. doi: 10.1038/s41598-022-11876-4. Sci Rep. 2022. PMID: 35552476 Free PMC article.
30 results