A machine learning approach identifies distinct early-symptom cluster phenotypes which correlate with hospitalization, failure to return to activities, and prolonged COVID-19 symptoms.
Epsi NJ, Powers JH, Lindholm DA, Mende K, Malloy A, Ganesan A, Huprikar N, Lalani T, Smith A, Mody RM, Jones MU, Bazan SE, Colombo RE, Colombo CJ, Ewers EC, Larson DT, Berjohn CM, Maldonado CJ, Blair PW, Chenoweth J, Saunders DL, Livezey J, Maves RC, Sanchez Edwards M, Rozman JS, Simons MP, Tribble DR, Agan BK, Burgess TH, Pollett SD; EPICC COVID-19 Cohort Study Group.
Epsi NJ, et al. Among authors: pollett sd.
PLoS One. 2023 Feb 9;18(2):e0281272. doi: 10.1371/journal.pone.0281272. eCollection 2023.
PLoS One. 2023.
PMID: 36757946
Free PMC article.