Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

7 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L; Reader study level-I and level-II Groups; Alt C, Arenbergerova M, Bakos R, Baltzer A, Bertlich I, Blum A, Bokor-Billmann T, Bowling J, Braghiroli N, Braun R, Buder-Bakhaya K, Buhl T, Cabo H, Cabrijan L, Cevic N, Classen A, Deltgen D, Fink C, Georgieva I, Hakim-Meibodi LE, Hanner S, Hartmann F, Hartmann J, Haus G, Hoxha E, Karls R, Koga H, Kreusch J, Lallas A, Majenka P, Marghoob A, Massone C, Mekokishvili L, Mestel D, Meyer V, Neuberger A, Nielsen K, Oliviero M, Pampena R, Paoli J, Pawlik E, Rao B, Rendon A, Russo T, Sadek A, Samhaber K, Schneiderbauer R, Schweizer A, Toberer F, Trennheuser L, Vlahova L, Wald A, Winkler J, Wölbing P, Zalaudek I. Haenssle HA, et al. Among authors: wolbing p. Ann Oncol. 2018 Aug 1;29(8):1836-1842. doi: 10.1093/annonc/mdy166. Ann Oncol. 2018. PMID: 29846502 Free article.
Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
Haenssle HA, Fink C, Toberer F, Winkler J, Stolz W, Deinlein T, Hofmann-Wellenhof R, Lallas A, Emmert S, Buhl T, Zutt M, Blum A, Abassi MS, Thomas L, Tromme I, Tschandl P, Enk A, Rosenberger A; Reader Study Level I and Level II Groups. Haenssle HA, et al. Ann Oncol. 2020 Jan;31(1):137-143. doi: 10.1016/j.annonc.2019.10.013. Ann Oncol. 2020. PMID: 31912788 Free article.
Skin lesions of face and scalp - Classification by a market-approved convolutional neural network in comparison with 64 dermatologists.
Haenssle HA, Winkler JK, Fink C, Toberer F, Enk A, Stolz W, Deinlein T, Hofmann-Wellenhof R, Kittler H, Tschandl P, Rosendahl C, Lallas A, Blum A, Abassi MS, Thomas L, Tromme I, Rosenberger A; Reader study level-I and level-II Groups Christina Alt. Haenssle HA, et al. Eur J Cancer. 2021 Feb;144:192-199. doi: 10.1016/j.ejca.2020.11.034. Epub 2020 Dec 25. Eur J Cancer. 2021. PMID: 33370644
Superior skin cancer classification by the combination of human and artificial intelligence.
Hekler A, Utikal JS, Enk AH, Hauschild A, Weichenthal M, Maron RC, Berking C, Haferkamp S, Klode J, Schadendorf D, Schilling B, Holland-Letz T, Izar B, von Kalle C, Fröhling S, Brinker TJ; Collaborators. Hekler A, et al. Eur J Cancer. 2019 Oct;120:114-121. doi: 10.1016/j.ejca.2019.07.019. Epub 2019 Sep 10. Eur J Cancer. 2019. PMID: 31518967 Free article.
Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.
Maron RC, Weichenthal M, Utikal JS, Hekler A, Berking C, Hauschild A, Enk AH, Haferkamp S, Klode J, Schadendorf D, Jansen P, Holland-Letz T, Schilling B, von Kalle C, Fröhling S, Gaiser MR, Hartmann D, Gesierich A, Kähler KC, Wehkamp U, Karoglan A, Bär C, Brinker TJ; Collabrators. Maron RC, et al. Eur J Cancer. 2019 Sep;119:57-65. doi: 10.1016/j.ejca.2019.06.013. Epub 2019 Aug 14. Eur J Cancer. 2019. PMID: 31419752 Free article.