Severe leukopenia and dysregulated erythropoiesis in SCID mice persistently infected with the parvovirus minute virus of mice

J Virol. 1999 Mar;73(3):1774-84. doi: 10.1128/JVI.73.3.1774-1784.1999.

Abstract

Parvovirus minute virus of mice strain i (MVMi) infects committed granulocyte-macrophage CFU and erythroid burst-forming unit (CFU-GM and BFU-E, respectively) and pluripotent (CFU-S) mouse hematopoietic progenitors in vitro. To study the effects of MVMi infection on mouse hemopoiesis in the absence of a specific immune response, adult SCID mice were inoculated by the natural intranasal route of infection and monitored for hematopoietic and viral multiplication parameters. Infected animals developed a very severe viral-dose-dependent leukopenia by 30 days postinfection (d.p.i.) that led to death within 100 days, even though the number of circulating platelets and erythrocytes remained unaltered throughout the disease. In the bone marrow of every lethally inoculated mouse, a deep suppression of CFU-GM and BFU-E clonogenic progenitors occurring during the 20- to 35-d.p.i. interval corresponded with the maximal MVMi production, as determined by the accumulation of virus DNA replicative intermediates and the yield of infectious virus. Viral productive infection was limited to a small subset of primitive cells expressing the major replicative viral antigen (NS-1 protein), the numbers of which declined with the disease. However, the infection induced a sharp and lasting unbalance of the marrow hemopoiesis, denoted by a marked depletion of granulomacrophagic cells (GR-1(+) and MAC-1(+)) concomitant with a twofold absolute increase in erythroid cells (TER-119(+)). A stimulated definitive erythropoiesis in the infected mice was further evidenced by a 12-fold increase per femur of recognizable proerythroblasts, a quantitative apoptosis confined to uninfected TER-119(+) cells, as well as by a 4-fold elevation in the number of circulating reticulocytes. Therefore, MVMi targets and suppresses primitive hemopoietic progenitors leading to a very severe leukopenia, but compensatory mechanisms are mounted specifically by the erythroid lineage that maintain an effective erythropoiesis. The results show that infection of SCID mice with the parvovirus MVMi causes a novel dysregulation of murine hemopoiesis in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Bone Marrow / pathology
  • Bone Marrow / virology
  • Erythroid Precursor Cells / pathology
  • Erythropoiesis*
  • Hyperplasia
  • Leukopenia / etiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, SCID
  • Minute Virus of Mice*
  • Parvoviridae Infections / blood*