Deconstructing (and reconstructing) cell migration

Microsc Res Tech. 1998 Dec 1;43(5):358-68. doi: 10.1002/(SICI)1097-0029(19981201)43:5<358::AID-JEMT2>3.0.CO;2-D.

Abstract

An overriding objective in cell biology is to be able to relate properties of particular molecular components to cell behavioral functions and even physiology. In the "traditional" mode of molecular cell biology, this objective has been tackled on a molecule-by-molecule basis, and in the "future" mode sometimes termed "functional genomics," it might be attacked in a high-throughput, parallel manner. Regardless of the manner of approach, the relationship between molecular-level properties and cell-level function is exceedingly difficult to elucidate because of the large number of relevant components involved, their high degree of interconnectedness, and the inescapable fact that they operate as physico-chemical entities-according to the laws of kinetics and mechanics-in space and time within the cell. Cell migration is a prominent representative example of such a cell behavioral function that requires increased understanding for both scientific and technological advance. This article presents a framework, derived from an engineering perspective regarding complex systems, intended to aid in developing improved understanding of how properties of molecular components influence the function of cell migration. That is, cell population migration behavior can be deconstructed as follows: first in terms of a mathematical model comprising cell population parameters (random motility, chemotaxis/haptotaxis, and chemokinesis/haptokinesis coefficients), which in turn depend on characteristics of individual cell paths that can be analyzed in terms of a mathematical model comprising individual cell parameters (translocation speed, directional persistence time, chemotactic/haptotactic index), which in turn depend on cell-level physical processes underlying motility (membrane extension and retraction, cell/substratum adhesion, cell contractile force, front-vs.-rear asymmetry), which in turn depend on molecular-level properties of the plethora of components involved in governance and regulation of these processes. Hence, the influence of any molecular component on cell population migration can be understood by reconstructing these relationships from the molecular level to the physical process level to the individual cell path level to the cell population distribution level. This approach requires combining experimental, theoretical, and computational methodologies from molecular biology, biochemistry, biophysics, and bioengineering.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Count
  • Cell Movement / physiology*
  • Models, Biological*