The use of cognitive subtraction to study the neural substrates of the maintenance component of spatial working memory in humans relies upon the assumptions of the pure insertion of cognitive processes and a linear transform of neural activity to neuroimaging signal. Here, functional changes attributable to the memory requiring phase (referred to as the retention delay) of a spatial working memory task were temporally discriminated from those attributable to other behavioral subcomponents within trials using an experimental design that is argued to obviate these assumptions, as well as permit a joint test of their validity. The hypothesis that the assumptions of cognitive subtraction (as applied to neuroimaging) hold in general was not supported. Functional changes attributable to the retention delay were detected in the dorsolateral prefrontal cortex as well as in other cortical regions in a subset of the subjects, and in the right frontal eye field and right superior parietal lobule of all subjects (n=5). These results support models in which these regions are involved in maintaining spatial representations in humans. In addition, nearly all regions that evidenced such functional changes during the retention delay also evidenced functional changes during behaviors that did not require spatial working memory. This result tends to dispute models which posit the existence of gross neuroanatomical regions involved in solely mnemonic function.
Copyright 1999 Elsevier Science B.V.