We purified and characterized a novel peptide from the venom of the fish-hunting cone snail Conus striatus that inhibits voltage-gated K+ channels. The peptide, kappaA-conotoxin SIVA, causes characteristic spastic paralytic symptoms when injected into fish, and in frog nerve-muscle preparations exposed to the toxin, repetitive action potentials are seen in response to a single stimulus applied to the motor nerve. Other electrophysiological tests on diverse preparations provide evidence that is consistent with the peptide blocking K+ channels. The peptide has three disulfide bonds; the locations of Cys residues indicate that the spastic peptide may be the first and defining member of a new family of Conus peptides, the kappaA-conotoxins, which are structurally related to, but pharmacologically distinct from, the alphaA-conotoxins. This 30 AA tricyclic toxin has several characteristics not previously observed in Conus peptides. In addition to the distinctive biological and physiological activity, a novel biochemical feature is the unusually long linear N-terminal tail (11 residues) which contains one O-glycosylated serine at position 7. This is the first evidence for O-glycosylation as a posttranslational modification in a biologically active Conus peptide.