Secondary osteoporosis

Aging (Milano). 1998 Jun;10(3):214-24. doi: 10.1007/BF03339655.

Abstract

Generalized osteoporosis currently represents a heterogeneous group of conditions with many different causes and pathogenetic mechanisms, that often are variably associated. The term "secondary" is applied to all patients with osteoporosis in whom the identifiable causal factors are other than menopause and aging. In this heterogeneous group of conditions, produced by many different pathogenetic mechanisms, a negative bone balance may be variably associated with low, normal or increased bone remodeling states. A consistent group of secondary osteoporosis is related to endocrinological or iatrogenic causes. Exogenous hypercortisolism may be considered an important risk factor for secondary osteoporosis in the community, and probably glucocorticoid-induced osteoporosis is the most common type of secondary osteoporosis. Supraphysiological doses of corticosteroids cause two abnormalities in bone metabolism: a relative increase in bone resorption, and a relative reduction in bone formation. Bone loss, mostly of trabecular bone, with its resultant fractures is the most incapacitating consequence of osteoporosis. The estimated incidence of fractures in patients prescribed corticosteroid is 30% to 50%. Osteoporosis is considered one of the potentially serious side effects of heparin therapy. The occurrence of heparin-induced osteoporosis appeared to be strictly related to the length of treatment (over 4-5 months), and the dosage (15,000 U or more daily), but the pathogenesis is poorly understood. It has been suggested that heparin could cause an increase in bone resorption by increasing the number of differentiated osteoclasts, and by enhancing the activity of individual osteoclasts. Hyperthyroidism is frequently associated with loss of trabecular and cortical bone; the enhanced bone turnover that develops in thyrotoxicosis is characterized by an increase in the number of osteoclasts and resorption sites, and an increase in the ratio of resorptive to formative bone surfaces, with the net result of bone loss. Despite these findings, the occurrence of pathological fractures in patients with hyperthyroidism is relatively low, and probably due to the fact that deficiencies in bone mass may be reversed by treatment of the thyroid disease. Most, but not all, studies on insulin-dependent diabetes mellitus (IDDM) report an association with osteopenia. In IDDM, the extent of bone loss is usually slight, which helps explain the discrepancy between the frequency of decreased bone mineral density, and the frequency of osteoporotic fractures in long-standing diabetes. Contradictory results have been obtained in non-insulin-dependent diabetes mellitus (NIDDM) patients. Increased rates of bone loss at the radius and lumbar spine were demonstrated either in patients with two-thirds gastric resection and Billroth II reconstruction, or in those with one-third resection and Billroth I anastomosis, and the metabolic bone disease following gastrectomy may consist also of osteomalacia or mixed pattern of osteoporosis-osteomalacia, with secondary hyperparathyroidism. Miscellaneous causes of secondary osteoporosis are also immobilization, pregnancy and lactation, and alcohol abuse.

Publication types

  • Review

MeSH terms

  • Adult
  • Aged
  • Aging / physiology
  • Diabetes Mellitus, Type 1 / complications*
  • Diabetes Mellitus, Type 2 / complications*
  • Female
  • Humans
  • Hyperthyroidism / complications*
  • Osteoporosis / etiology*
  • Pregnancy
  • Pregnancy Complications