The functional integrity of the neuromuscular synapse requires that sufficient numbers of acetylcholinesterase (AChE) molecules be localized on the specialized extracellular matrix between the nerve terminal and the post-synaptic membrane. Multiple interrelated levels of regulation are necessary to accomplish this complex task including the spatial and temporal restriction of AChE mRNA expression within the muscle fiber, local translation and assembly of AChE polypeptides, and focused accumulation of AChE molecules on the extracellular matrix. This is accomplished in part through the organization of other extracellular matrix molecules into a complex which further associates with acetylcholine receptors and their accompanying molecules. Finally, the mature neuromuscular junction contains molecules which can act as receptors for the attachment of AChE which in turn may allow for the turnover of this enzyme at the synapse. This brief review will focus mainly on contributions from our laboratory towards understanding the mechanisms involved in organizing AChE molecules at the neuromuscular synapse.