"Mayer waves" are long-period (6 to 12 seconds) oscillations in arterial blood pressure, which have been observed and studied for more than 100 years in the cardiovascular system of humans and other mammals. A mathematical model of the human cardiovascular system is presented, incorporating parameters relevant to the onset of Mayer waves. The model is analyzed using methods of Liapunov stability and Hopf bifurcation theory. The analysis shows that increase in the gain of the baroreflex feedback loop controlling venous volume may lead to the onset of oscillations, while changes in the other parameters considered do not affect stability of the equilibrium state. The results agree with clinical observations of Mayer waves in human subjects, both in the period of the oscillations and in the observed age-dependence of Mayer waves. This leads to a proposed explanation of their occurrence, namely that Mayer waves are a gain-induced oscillation.