Protoporphyria (PP) is caused by a deficiency of ferrochelatase (FC) activity, which catalyzes the final step in the heme biosynthesis pathway. Bovine are the only species other than man with naturally occurring PP. For expression of the PP phenotype, two copies of the mutated gene are necessary in bovine, whereas one copy is sufficient in humans. We report the first potential disease-causing mutation in the bovine FC gene. The coding region of FC was sequenced from the liver tissue of protoporphyric and normal bovine. A transversion was identified at nucleotide position 1250 which changed the stop codon to leucine (TGA-->TTA) in the protoporphyric FC sequence. As a consequence, the mutant protein is predicted to have an additional 27 amino acids. To screen other bovine for the G-->T transversion, cDNAs from liver tissue of clinically and biochemically normal, and from heterozygous and homozygous affected animals were used for allele-specific polymerase chain reaction. Three normal animals had only the G allele, five affected animals had only the T allele, and three heterozygous animals had both the G and T alleles. These results support our hypothesis that this mutation causes PP in bovine.