The effects of gamma radiation on the stability and size of mammalian DNA were studied by using thermal transition spectrophotometry and pulsed-field and standard agarose gel electrophoresis. The experiments were performed using deproteinized calf thymus DNA in buffered deaerated aqueous solutions. A dual dose response was observed: a tendency for increased helix stability at "low" doses (0-4 Gy) accompanied by a high tendency of the DNA molecules to interact, forming larger molecules, followed by a gradual increase of degradation and helix instability at higher doses. The results reported here for the low-dose region are consistent with the hypothesis of inter- and intramolecular interactions of covalent character (crosslinking) in irradiated DNA molecules.