CD38, a type II transmembrane glycoprotein, behaves as a catalytically active transporter responsible for ectocellular generation of cyclic ADP-ribose (cADPR) from NAD+ and for subsequent influx of cADPR across membranes [Franco, L., Guida, L., Bruzzone, S., Zocchi, E., Usai, C. and De Flora, A. (1998) FASEB J. in press]. cADPR regulates intracellular calcium homeostasis by releasing calcium from responsive stores. The cADPR-transporting function of CD38 requires channel-generating oligomeric forms of the protein rather than the 46 kDa monomers that have been described so far in CD38+ cells. Here we demonstrate that CD38, both in reconstituted proteoliposomes and in CD38-transfected HeLa cells, is a mixture of catalytically active monomers, homodimers and homotetramers. A soluble recombinant form of CD38 corresponding to its ectocellular region proved to be monomeric. Thus, association of native CD38 with either artificial or natural membranes seems to result in a reversible juxtaposition of monomers suitable to cADPR-transporting activity.