Ionic transport in macula densa cells

Kidney Int Suppl. 1998 Sep:67:S58-64. doi: 10.1046/j.1523-1755.1998.06712.x.

Abstract

Recent work has provided substantial insights into functional characteristics of macula densa (MD) cells. Microelectrode and patch-clamp experiments on the rabbit isolated thick ascending limb (TAL)/glomerulus preparation have shown that MD cells possess a furosemide-sensitive Na:K:2Cl cotransporter, an apical 41-pS K+ channel, and a dominant basolateral Cl- conductance. Increasing luminal fluid [NaCl] ([NaCl]L) results in furosemide-sensitive cell depolarization due to a rise in intracellular [Cl-] that stimulates basolateral electrogenic Cl- efflux. Intracellular pH (pHi) measurements show the presence of an apical Na:H exchanger that couples transepithelial Na+ transport to pHi. Experimental results and thermodynamic considerations allow estimation of intracellular [Na+] and [Cl-] ([Na+]i, [Cl-]i) under different conditions. When the Na:K:2Cl cotransporter is equilibrated (or in the presence of furosemide), [Na+]i and [Cl-]i are low (approximately 6 to 7 mM), whereas when the cotransporter is fully activated, [Na+]i and [Cl-]i increase substantially to approximately 70 and 20 mM, respectively. Finally, luminal addition of NH4+ produces cell acidification that depends on NH4+ apical transport rate through the Na:K:2Cl. Using a simple transport model for NH4+, the initial NH4+ influx rate in MD cells is comparable to the corresponding flux in TAL. This challenges the idea that MD cells have a low transport activity but supports our findings about large changes in intracellular concentrations as a function of [NaCl]L.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Carrier Proteins / metabolism*
  • Chlorides / metabolism
  • Juxtaglomerular Apparatus / chemistry*
  • Juxtaglomerular Apparatus / metabolism*
  • Potassium / metabolism
  • Sodium / metabolism
  • Sodium-Potassium-Chloride Symporters

Substances

  • Carrier Proteins
  • Chlorides
  • Sodium-Potassium-Chloride Symporters
  • Sodium
  • Potassium