Two ferritin cDNAs were cloned from the liver and spinal cord of the sanguivore lamprey Lampetra fluviatilis, an extant representative of the ancient agnathan (jawless) stage in vertebrate evolution. The deduced proteins of 20.2 kDa (H-subunit) and 20.1 kDa (M-subunit) display 73% sequence identity, and both contain the ferroxidase center characteristic of animal H-ferritin. A highly conserved iron-responsive element (IRE) was identified in the 5' untranslated region of lamprey H-ferritin. Lamprey ferritin IRE forms a specific complex with crude lamprey and rat liver extracts, and with recombinant human iron-regulatory protein (IRP-1) in an electrophoretic mobility shift assay. Furthermore, lamprey ferritin IRE competes with labeled human ferritin IRE for binding to IRP in lamprey and mammalian extracts. Two liver cDNA sequences encoding 323 residues and 101 residues of two genetically distinct lamprey IRP were amplified by PCR. Lamprey IRP-1 and IRP-2, which are 72% identical, display about 74% sequence identity to their presumed homologues in mammals. Northern blot analysis shows that two IRP transcripts of 3.6 kb and 5.8 kb are expressed in lamprey liver. Given the ancient lineage of lampreys, the results indicate that the IRE/IRP regulatory system has remained highly conserved during the evolution of vertebrates.