This study analyzes regional and laminar distribution patterns of neurotransmitter binding sites in the motor areas of the macaque mesial frontal cortex. Differences in distribution patterns are compared with the cytoarchitectonic parcellation. Binding sites were analyzed with quantitative in vitro receptor autoradiography in unfixed brains of five macaque monkeys. Alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) binding sites were labeled with [3H]AMPA, [3H]kainate, and [3H]MK-801, respectively, muscarinic binding sites with [3H]pirenzepine or [3H]oxotremorine-M, noradrenergic binding sites with [3H]prazosin or [3H]UK-14304, gamma-aminobutyric acid (GABA)A binding sites with [3H]muscimol, and serotoninergic binding sites with [3H]ketanserine. Adjacent sections were stained with a modified Nissl method for cytoarchitectonic analysis. In the motor areas F1, F3, and F6, [3H]AMPA, [3H]pirenzepine, and [3H]oxotremorine-M binding was maximal in layers II, III, and V, and [3H]kainate binding was maximal in layers V and VI. Clear-cut changes in laminar distribution patterns of [3H]AMPA, [3H]kainate, and [3H]oxotremorine-M binding sites very closely matched corresponding cytoarchitectonic borders. Mean areal binding densities of all ligands to F1, F3, and F6 were plotted as polar plots for each area. A polygon was obtained for each area ("neurochemical fingerprint") when all the density values belonging to one area were connected with each other. The "neurochemical fingerprints" of F1, F3, and F6 were virtually identical in shape but increased in size from F1 to F6. This result reflects the functional similarity of these motor-related areas and possibly correlates with their differential involvement in motor control. Areas F1, F3, and F6 can thus be grouped into one "neurochemical family" of areas.