Bruchid resistance, controlled by a single dominant gene (Br) in a wild mungbean accession (TC1966), has been incorporated into cultivated mungbean (Vigna radiata). The resistance gene simultaneously confers inhibitory activity against the bean bug, Riptortus clavatus Thunberg (Hemiptera: Alydidae). The resultant isogenic line (BC20 generation) was characterized by the presence of a group of novel cyclopeptide alkaloids, called vignatic acids. A linkage map was constructed for Br and the vignatic acid gene (Va) using restriction fragment length polymorphism (RFLP) markers and a segregating BC20F2 population. By screening resistant and susceptible parental lines with 479 primers, eight randomly amplified polymorphic DNA (RAPD) markers linked to Br were identified and cloned for use as RFLP probes. All eight RAPD-based markers, one mungbean, and four common bean genomic clones were effectively integrated around Br within a 3.7-cM interval. Br was mapped to a 0.7-cM segment between a cluster consisting of six markers and a common bean RFLP marker, Bng110. The six markers are closest to the bruchid resistance gene, approximately 0.2 cM away. The vignatic acid gene, Va, cosegregated with bruchid resistance. However, one individual was identified in the BC20F2 population that retained vignatic acids in spite of its bruchid susceptibility. Consequently, Va was mapped to a single locus at the same position as the cluster of markers and 0.2 cM away from Br. These results suggest that the vignatic acids are not the principal factors responsible for bruchid resistance in V. radiata but will facilitate the use of map-based cloning strategies to isolate the Br gene.