Interleukin 12 (IL-12) is a pleiotropic cytokine and mediates several biological activities on human T and natural killer (NK) cells, including induction of IFN-gamma production, enhancement of cell-mediated cytotoxicity and comitogenic effects on resting T-cells. The major cellular sources producing IL-12 are antigen-stimulated monocytes, macrophages, and B-cells isolated from peripheral blood mononuclear cells (PBMC). Our laboratory has investigated the regulation of IL-12 gene expression in both cord blood and adult PBMC, and the effects of IL-12 on induction of IFN-gamma production, NK, and lymphokine-activated killer (LAK) cytotoxicity. IL-12 mRNA expression and protein production in LPS-stimulated cord blood MNC were 3-4 fold decreased when compared with adult PBMC. There were no differences between cord blood and adult PBMC in both basal levels of transcription or the degree of transcriptional activation of the IL-12 gene. Additionally, the half-life of IL-12 p40 mRNA was 3-fold lower in activated cord blood compared to adult PBMC. Exogenous IL-12 induced a significant increase of IFN-gamma from both cord and adult PBMC. Cord MNC has significantly reduced levels of NK activity, and IL-12 significantly enhanced cord blood NK cytotoxicity up to similar levels in adult PBMC. IL-12 also significantly enhanced cord blood NK and LAK activities against a broad range of neuroblastoma, leukemia, and lymphoma cell lines. Lower doses of IL-12 and IL-15 concomitantly generated either synergistic or additive effects on cord blood NK and LAK cytotoxicities. In light of the important biological functions of IL-12, reduced expression and production of IL-12 from activated cord blood may contribute to the immaturity of cord blood cellular immunity and contribute, in part, to decreased severe graft vs. host disease following unrelated cord blood stem cell transplantation. IL-12 enhancement of IFN-gamma, NK, and LAK activity in activated cord blood MNC up to comparable levels in adult PBMC suggests that exogenous IL-12 stimulation can compensate for the immaturity in cord blood cellular immunity. These characteristics of IL-12 biological activity strongly suggest its potential usefulness in future cancer immunotherapy.