Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: evidence for an important genetic-environmental interaction

Blood. 1998 Jun 1;91(11):4158-63.

Abstract

Moderate elevation of plasma total homocysteine (tHcy) is a strong and independent risk factor for coronary artery disease (CAD). It can result from genetic or nutrient-related disturbances in the transsulfuration or remethylation pathways for Hcy metabolism. A point mutation (C677T; Ala-to-Val) in the gene encoding the 5, 10-methylenetetrahydrofolate reductase (MTHFR) has been recently reported to render the enzyme thermolabile and less active. Studies on the role of this mutation as a risk factor for CAD have given conflicting results. We studied a total of 415 subjects, 278 with angiographically documented multivessel CAD and 137 with angiographically documented normal coronary arteries. The overall frequency of the MTHFR V/V homozygous genotype was 15.7% (with 52.5% heterozygous and 31.8% normal). Subgroup analysis showed no significant differences between CAD and CAD-free subjects. A genotype/phenotype correlation study showed a marked effect of folate on the association between MTHFR genotypes and tHcy. Among individuals with folate levels below the median (11.5 nmol/L), fasting tHcy was significantly increased not only in V/V homozygotes (by 59%) but also, at intermediate values, in A/V heterozygotes (by 21% on average). Conversely, the mutation resulted neutral with respect to tHcy levels in subjects with adequate folate levels. We conclude that, in our population, the MTHFR C677T mutation is rather common, but it does not appear to be associated per se to CAD. A genetic-environmental interaction may contribute to the vascular risk by elevating tHcy when folate status is low.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Alleles
  • Arteriosclerosis / blood*
  • Arteriosclerosis / diagnosis
  • Arteriosclerosis / genetics*
  • Coronary Angiography
  • Female
  • Folic Acid / blood*
  • Genotype
  • Homocysteine / blood*
  • Humans
  • Italy
  • Male
  • Methylenetetrahydrofolate Reductase (NADPH2)
  • Middle Aged
  • Oxidoreductases Acting on CH-NH Group Donors / genetics*
  • Phenotype
  • Point Mutation*
  • Polymorphism, Genetic

Substances

  • Homocysteine
  • Folic Acid
  • Oxidoreductases Acting on CH-NH Group Donors
  • Methylenetetrahydrofolate Reductase (NADPH2)