A mathematical framework for quantitative SPECT (single photon emission computed tomography) reconstruction of the heart is presented. An efficient simultaneous compensation approach to the reconstruction task is described. The implementation of the approach on a digital computer is delineated. The approach was validated by experimental data acquired from chest phantoms. The phantoms consisted of a cylindrical elliptical tank of Plexiglass, a cardiac insert made of Plexiglass, a spine insert of packed bone meal and lung inserts made of styrofoam beads alone. Water bags were added to simulate different body characteristics. Comparison between the quantitative reconstruction and the conventional FBP (filtered backprojection) method was performed. The FBP reconstruction had a poor quantitative accuracy and varied for different body configurations. Significant improvement in reconstruction accuracy by the quantitative approach was demonstrated with a moderate computing time on a currently available desktop computer. Furthermore, the quantitative reconstruction was robust for different body characteristics. Therefore, the quantitative approach has the potential for clinical use.