Nuclear factor kappaB1 (NF-kappaB) is a heterodimeric complex that regulates transcription of many genes involved in immune and inflammatory responses. Its 50-kDa subunit (p50) is generated by the ubiquitin-proteasome pathway from a 105-kDa precursor (p105). We have reconstituted this proteolytic process in HeLa cell extracts and purified the responsible enzymes. Ubiquitination of p105 requires E1, and either of two types of E2s, E2-25K (for which p105 is the first proven substrate) or a member of the UBCH5 (UBC4) family. It also requires a new E3 of 50 kDa, which we call E3kappaB. This set of enzymes differs from the E2s and E3 reported by others to catalyze p105 ubiquitination in reticulocytes. The ubiquitinating enzymes purified here, together with 26S proteasomes, allowed formation of p50. Thus, the 26S proteasome provides all the proteolytic activities necessary for p105 processing. Interestingly, in the reconstituted system, as observed in cells, the C-terminally truncated form of p105, p97, was processed into p50 more efficiently than normal p105, even when both species were ubiquitinated to a similar extent. Therefore, some additional mechanism involving the C-terminal region of p105 influences the proteolytic processing of the ubiquitinated precursor.