The ability of human CD1b molecules to present nonpeptide antigens is suggested by the T cell recognition of microbial lipids and lipoglycans in the presence of CD1b-expressing antigen-presenting cells. We demonstrate the high-affinity interaction of CD1b molecules with the acyl side chains of known T cell antigens, lipoarabinomannan, phosphatidylinositol mannoside, and glucose monomycolate. Furthermore, CD1b-antigen binding was optimal at acidic pH, consistent with the known requirement for endosomal acidification in CD1b-restricted antigen presentation. The mechanism for CD1b-ligand interaction involves the partial unfolding of the alpha helices of CD1b at acidic pH, revealing a hydrophobic binding site that could accommodate lipid. These data provide direct evidence that the CD1b molecule has evolved unique biochemical properties that enable the binding of lipid-containing antigens from intracellular pathogens.