Potential role of TGF-beta in diabetic nephropathy

Miner Electrolyte Metab. 1998;24(2-3):190-6. doi: 10.1159/000057369.

Abstract

Renal injury in diabetes mellitus is a major cause of morbidity and mortality. Several manifestations of diabetic nephropathy may be a consequence of altered production and/or response to cytokines or growth factors. Transforming growth factor-beta (TGF-beta) is one such factor because it promotes renal cell hypertrophy and regulates the production of extracellular matrix molecules. In addition, high ambient glucose increases TGF-beta1 mRNA and protein level in cultured proximal tubular cells and glomerular epithelial and mesangial cells. Neutralizing anti-TGF-beta antibodies or antisense TGF-beta1 oligodeoxynucleotides prevents the hypertrophic effects of high glucose and the stimulation of matrix synthesis in renal cells. Several reports have described overexpression of TGF-beta in the glomeruli and tubulointerstitium of experimental and human diabetes mellitus. We recently provided evidence that the kidney in diabetic patients displays net renal production of immunoreactive TGF-beta1, whereas there is net renal extraction in nondiabetic subjects. We also demonstrated that short-term treatment of streptozotocin-diabetic mice with neutralizing monoclonal antibody directed against TGF-beta significantly reduces kidney weight and glomerular hypertrophy, and attenuates the increase in extracellular matrix mRNA levels. The factors that mediate increased renal TGF-beta activity involve hyperglycemia per se and the intermediary action of other potent mediators such as angiotensin II, thromboxane, endothelins, and platelet-derived growth factor.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cells, Cultured
  • Diabetic Nephropathies* / etiology
  • Diabetic Nephropathies* / pathology
  • Gene Expression / drug effects
  • Glucose / pharmacology
  • Humans
  • Transforming Growth Factor beta / drug effects
  • Transforming Growth Factor beta / physiology*

Substances

  • Transforming Growth Factor beta
  • Glucose