The intracellular mechanisms used by insulin and insulin-like growth factors to block programmed cell death are unknown. To identify receptor structures and signaling pathways essential for anti-apoptotic effects on cells, we have created a chimeric receptor (colony-stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR)) connecting the extracellular, ligand-binding domain of the colony-stimulating factor-1 (CSF-1) receptor to the transmembrane and cytoplasmic domains of the insulin receptor. Upon activation with CSF-1, the CSF1R/IR phosphorylates itself and intracellular substrates in a manner characteristic of normal insulin receptors. CSF-1 treatment protected cells expressing the CSF1R/IR from staurosporine-induced apoptosis. A chimeric receptor (CSF1R/IRDelta960) with a deletion of 12 amino acids from its juxtamembrane domain was constructed and expressed. CSF-1-treated cells expressing the CSF1R/IRDelta960 are unable to phosphorylate IRS-1 and Shc (Chaika, O. V., Chaika, N., Volle, D. J., Wilden, P. A. , Pirrucello, S. J., and Lewis, R. E. (1997) J. Biol. Chem. 272, 11968-11974). CSF-1 stimulated glucose uptake, mitogen-activated protein kinases, and IRS-1-associated phosphatidylinositol 3' kinase in cells expressing the CSF1R/IR but not in cells expressing the CSF1R/IRDelta960. Surprisingly, the CSF1R/IRDelta960 was as effective as the CSF1R/IR in mediating CSF-1 protection of cells from staurosporine-induced apoptosis. These observations indicate that the anti-apoptotic effects of the insulin receptor cytoplasmic domain can be mediated by signaling pathways distinct from those requiring IRS-1 and Shc.