Salinity promotes accumulation of 3-dimethylsulfoniopropionate and its precursor S-methylmethionine in chloroplasts

Plant Physiol. 1998 Jan;116(1):165-71. doi: 10.1104/pp.116.1.165.

Abstract

Wollastonia biflora (L.) DC. plants accumulate the osmoprotectant 3-dimethylsulfoniopropionate (DMSP), particularly when salinized. DMSP is known to be synthesized in the chloroplast from S-methylmethionine (SMM) imported from the cytosol, but the sizes of the chloroplastic and extrachloroplastic pools of these compounds are unknown. We therefore determined DMSP and SMM in mesophyll protoplasts and chloroplasts. Salinization with 30% (v/v) artificial seawater increased protoplast DMSP levels from 4.6 to 6.0 mumol mg-1 chlorophyll (Chl), and chloroplast levels from 0.9 to 1.9 mumol mg-1 Chl. The latter are minimum values because intact chloroplasts leaked DMSP during isolation. Correcting for this leakage, it was estimated that in vivo about one-half of the DMSP is chloroplastic and that stromal DMSP concentrations in control and salinized plants are about 60 and 130 mM, respectively. Such concentrations would contribute significantly to chloroplast osmoregulation and could protect photosynthetic processes from stress injury. SMM levels were measured using a novel mass-spectrometric method. About 40% of the SMM was located in the chloroplast in unsalinized W. biflora plants, as was about 80% in salinized plants; the chloroplastic pool in both cases was approximately 0.1 mumol mg-1 Chl. In contrast, > or = 85% of the SMM was extrachloroplastic in pea (Pisum sativum L.) and spinach (Spinacia oleracea L.), which lack DMSP. DMSP synthesis may be associated with enhanced accumulation of SMM in the chloroplasm.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acids / metabolism
  • Chloroplasts / metabolism*
  • Kinetics
  • Osmolar Concentration
  • Protoplasts / metabolism
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Sulfonium Compounds / metabolism*
  • Vitamin U / metabolism*

Substances

  • Amino Acids
  • Sulfonium Compounds
  • Vitamin U
  • dimethylpropiothetin