Action potential electrogenesis in the axons of retinal ganglion cells is supported by voltage-gated sodium channels, and a tetrodotoxin (TTX)-inhibitable sodium conductance participates in anoxic injury of these axons within the optic nerve. However, the subtypes of sodium channels expressed in retinal ganglion cells have not been identified. In this study, we used reverse transcription-polymerase chain reaction (RT-PCR) and restriction enzyme mapping, together with in situ hybridization, to examine the expression of transcripts for sodium channel alpha-subunits I, II, III, NaG, Na6, hNE/PN1 and SNS, and beta-subunits 1 and 2, in the retina of the adult rat. RT-PCR yielded high levels of amplification of I, II, III, Na6, beta1 and beta2 transcripts. In situ hybridization demonstrated the presence of all these mRNAs in the cell bodies of retinal ganglion cells. Retinal ganglion cells thus express multiple sodium channel mRNAs, suggesting that they deploy several different types of sodium channels.