We evaluated a novel combined x-ray CT and SPECT medical imaging system for quantitative in vivo measurements of 99mTc-sestamibi uptake in an animal model of myocardial perfusion.
Methods: Correlated emission-transmission myocardial images were obtained from 7- to 10-kg pigs. The x-ray CT image was used to generate an object-specific attenuation map that was incorporated into an iterative ML-EM algorithm for reconstruction and attenuation correction of the coregistered SPECT images. The pixel intensities in the SPECT images were calibrated in units of radionuclide concentrations (MBq/g), then compared against in vitro 99mTc activity concentration measured from the excised myocardium. In addition, the coregistered x-ray CT image was used to determine anatomical boundaries for quantitation of myocardial regions with low perfusion.
Results: The accuracy of the quantitative measurement of in vivo activity concentration in the porcine myocardium was improved by object-specific attenuation correction. However, an additional correction for partial volume errors was required to retrieve the true activity concentration from the reconstructed SPECT images.
Conclusion: Accurate absolute SPECT quantitation required object-specific correction for attenuation and partial volume effects. Additional anatomical information from the x-ray CT image was helpful in defining regions of interest for quantitation of the SPECT images.