Purpose: The purpose of this study was to investigate the potential of poly(lactide-co-glycolide) (PLGA) microspheres to stabilize and deliver the analogue of camptothecin, 10-hydroxycamptothecin (10-HCPT).
Methods: 10-HCPT was encapsulated in PLGA 50:50 microspheres by using an oil-in-water emulsion-solvent evaporation method. The influence of encapsulation conditions (i.e., polymer molecular weight (Mw), polymer concentration, and carrier solvent composition) on the release of 10-HCPT from microspheres at 37 degrees C under perfect sink conditions was examined. Analysis of the drug stability in the microspheres was performed by two methods: i) by extraction of 10-HCPT from microspheres and ii) by sampling release media before lactone--carboxylate conversion could take place.
Results: Microspheres made of low Mw polymer (inherent viscosity 0.15 dl/g) exhibited more continuous drug release than those prepared from polymers of higher Mw (i.v. = 0.58 and 1.07 dl/g). In addition, a high polymer concentration and the presence of cosolvent in the carrier solution to dissolve 10-HCPT were both necessary in the microsphere preparation in order to eliminate a large initial burst of the released 10-HCPT. An optimal microsphere formulation released 10-HCPT slowly and continuously for over two months with a relatively small initial burst of the released drug. Both analytical methods used to assess the stability of 10-HCPT revealed that the unreleased camptothecin analogue in the microspheres remained in its active lactone form (> 95%) over the entire 2-month duration of study.
Conclusions: PLGA carriers such as those described here may be clinically useful to stabilize and deliver camptothecins for the treatment of cancer.