Force-frequency effect is a powerful determinant of myocardial contractility in the mouse

Am J Physiol. 1997 Sep;273(3 Pt 2):H1283-90. doi: 10.1152/ajpheart.1997.273.3.H1283.

Abstract

The effects of heart rate (HR) on myocardial contractility in the mouse heart in situ were first investigated in open-chest mice (n = 7) by left ventricular (LV) catheter-tip micromanometry. HR was first slowed with a sinus node inhibitor (zatebradine), and atrial pacing to progressively increase the HR caused a positive inotropic response (assessed by maximum positive first derivative of LV pressure, LV dP/dtmax) up to a HR of 282 beats/min with the onset of a descending limb of the force-frequency relation (FFR) at 332 beats/min. beta-Adrenergic receptor stimulation (dobutamine) shifted upward and significantly steepened the positive FFR and increased HR at the onset of the descending limb to 402 beats/min. HR and LV dP/dtmax were then studied in closed-chest mice without pacing during recovery from anesthesia (n = 7), and during rest and intermittent physical activity the FFR was linear and positive up to 600 beats/min. HR was then progressively slowed with zatebradine, and the points at rest and during activity fell on the same linear relation. Thus we conclude the following: 1) in the open-chest anesthetized mouse, a positive FFR was amplified by beta-adrenergic receptor stimulation, and 20 in the mouse recovering from anesthesia the sinus node rate remained a critical determinant of myocardial contractility, without a descending limb of the FFR.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anesthesia, General
  • Animals
  • Benzazepines / pharmacology
  • Cardiotonic Agents / pharmacology
  • Electrocardiography
  • Heart Atria
  • Heart Rate* / drug effects
  • Manometry
  • Mice
  • Myocardial Contraction* / drug effects
  • Regression Analysis
  • Sinoatrial Node / physiology
  • Ventricular Function, Left* / drug effects

Substances

  • Benzazepines
  • Cardiotonic Agents
  • zatebradine