The expression of the single capsid protein of Norwalk virus (NV) in Spodoptera frugiperda (Sf9) insect cells infected with recombinant baculovirus results in the assembly of virus-like particles (VLPs) of two sizes, the predominant 38-nm, or virion-size VLPs, and smaller, 23-nm VLPs. Here we describe the purification and biochemical characterization of the 23-nm VLPs. The 23-nm VLPs were purified to 95% homogeneity from the medium of Sf9 cultures by isopycnic CsCl gradient centrifugation followed by rate-zonal centrifugation in sucrose gradients. The compositions of the purified 23- and 38-nm VLPs were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein immunoblots. VLPs of both sizes showed a doublet at 58 kDa, the size of the full-length capsid protein. Upon alkaline treatment, the 23-nm VLPs underwent dissociation into soluble intermediates that were able to reassemble into 23- and 38-nm VLPs upon dialysis, suggesting that the assembly of both types of structures has a common pathway. Antigenic and biochemical properties of the 38- and 23-nm VLPs were examined and found to be conserved. Immunoprecipitation assays using polyclonal and monoclonal antibodies indicated that immunodominant epitopes on the capsid protein as well as conformational epitopes are conserved in the two types of particles. The trypsin cleavage site at residue 227 was protected in the assembled particles of both sizes but exposed after alkaline dissociation. These results, and the conservation of the binding activity of both forms of recombinant NV VLPs to cultured cells (L. J. White, J. M. Ball, M. E. Hardy, T. N. Tanaka, N. Kitamoto, and M. K. Estes, J. Virol. 70:6589-6597, 1996), suggest that the tertiary folding of the capsid protein responsible for these properties is conserved in the two structures. We hypothesize that the 23-nm VLPs are formed when 60 units of the NV capsid protein assembles into a structure with T=1 symmetry.