Neonatal hippocampal damage in rats: long-term spatial memory deficits and associations with magnitude of hippocampal damage

Hippocampus. 1997;7(4):403-15. doi: 10.1002/(SICI)1098-1063(1997)7:4<403::AID-HIPO6>3.0.CO;2-J.

Abstract

This study investigated the effects of neonatal hippocampal ablation on the development of spatial learning and memory abilities in rats. Newborn rats sustained bilateral electrolytic lesions of the hippocampus or were sham-operated on postnatal day 1 (PN1). At PN20-25, PN50-55, or PN90-95, separate groups of rats were tested in a Morris water maze on a visible "cue" condition (visible platform in a fixed location of the maze), a spatial "place" condition (submerged platform in a fixed location), or a no-contingency "random" condition (submerged platform in a random location). Rats were tested for 6 consecutive days, with 12 acquisition trials and 1 retention (probe) trial per day. During acquisition trials, the rat's latency to escape the maze was recorded. During retention trials (last trial for each day, no escape platform available), the total time the rat spent in the probe quadrant was recorded. Data from rats with hippocampal lesions tested as infants (PN20-25) or as adults (PN50-55 and PN90-95) converged across measures to reveal that 1) spatial (place) memory deficits were evident throughout developmental testing, suggesting that the deficits in spatial memory were long-lasting, if not permanent, and 2) behavioral performance measures under the spatial (place) condition were significantly correlated with total volume of hippocampal tissue damage, and with volume of damage to the right and anterior hippocampal regions. These results support the hypothesis that hippocampal integrity is important for the normal development of spatial learning and memory functions, and show that other brain structures do not assume hippocampal-spatial memory functions when the hippocampus is damaged during the neonatal period (even when testing is not begun until adulthood). Thus, neonatal hippocampal damage in rats may serve as a rodent model for assessing treatment strategies (e.g., pharmacological) relevant to human perinatal brain injury and developmental disabilities within the learning and memory realm.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Age Factors
  • Animals
  • Animals, Newborn
  • Behavior, Animal / physiology
  • Brain Injuries / physiopathology
  • Catheter Ablation*
  • Female
  • Hippocampus / physiopathology*
  • Hippocampus / surgery
  • Maze Learning / physiology
  • Memory Disorders / physiopathology*
  • Pregnancy
  • Rats
  • Rats, Sprague-Dawley
  • Spatial Behavior / physiology