Background: Bluetongue virus (BTV) is the prototypical virus of the genus orbivirus in the family Reoviridae and causes an economically important disease in domesticated animals, such as sheep. BTV is larger and more complex than any virus for which comprehensive atomic level structural information is available. Its capsid is made primarily from four structural proteins two of which, VP3 and VP7, form a core which remains intact as the virus penetrates the host cell. Each core particle contains 780 copies of VP7. The architecture of the trimeric VP7 molecule has been revealed by crystallographic analysis and is unlike other viral coat proteins reported to date.
Results: Two new crystal structures of VP7 have been solved, one (a cleavage product) at close to atomic resolution and the other at lower resolution. The VP7 subunit consists of two domains. The smaller, 'upper', domain is exposed on the core surface and has the beta jelly-roll motif common to many capsid proteins. The second, 'lower', domain is composed of a bundle of alpha helices. The cleavage product comprises the upper domain, which forms a rigid invariant trimeric fragment. The lower resolution structure of the intact molecule indicates that the alpha-helical domain can rotate about the linker to the upper domain to adopt radically different orientations with respect to the threefold axis in the intact protein.
Conclusions: The crystal structures of VP7 reveal a remarkable mix of rigidity and flexibility that may provide insights towards understanding how VP7 interacts with the other capsid proteins of different stoichiometries. These results suggest that substantial conformational changes in VP7 occur at some stage in the viral life cycle. Such changes may be related to the central role that VP7 is likely to play in cell attachment and membrane penetration.