This paper reports a study on the dynamics of tolerability in performing dynamic cycling in healthy subjects. Data on individually tolerable levels (power x duration) was obtained from 9 subjects by means of three submaximal tests on an ergometric bicycle lasting < or = 40 minutes, with constant load (50%, 65% and 80% of maximum VO2 reached during a previous test of increasing difficulty within the limits of the symptoms). During performance of the test we monitored heart rate and subjective perception of fatigue (Borg's 10-point scale). We then defined the individual functions of "isoperception", which expressed the individual trend of the product "power x duration" at identical subjective perception score. On the basis of the metabolic parameters monitored, the individual isoperceptive functions at a "moderate" level of fatigue (3 on the Borg scale) were defined as "tolerability) threshold" for prolonged dynamic cycling. The product "power x duration" defined by the isoperceptive curves at a "moderate" level of fatigue does in fact reflect the individual aerobic capacity that can be sustained for prolonged dynamic activity (under 60 minutes). In order to validate the hypothesis of tolerability of the functions identified, three further short tests were performed (duration < or = 8.5 minutes) on an ergometric bicycle, with measurement of ventilatory and metabolic parameters.