The integrin LFA-1 mediates activation-dependent leukocyte adhesion. The beta subunit cytoplasmic domain has been demonstrated previously to modulate the adhesiveness of LFA-1. To investigate whether the alpha subunit cytoplasmic domain is also involved in the regulation of LFA-1-adhesive function, we stably expressed cytoplasmic domain truncated forms of the alpha subunit in a Jurkat mutant (Jurkat-beta2.7) deficient in the endogenous LFA-1 alpha subunit and in K562 cells. Clones expressing similar levels of cell surface LFA-1 were tested for their ability to bind to immobilized ICAM-1. Truncation of the alpha subunit cytoplasmic domain before, but not after, the conserved GFFKR sequence motif resulted in constitutive ICAM-1 binding of both Jurkat-beta2.7 and K562 transfectants. However, truncation after the GFFKR motif reduced sensitivity to stimulation by PMA or stimulatory Abs. Internal deletion of the GFFKR motif, or point mutations of the Gly (G), the two Phe (F), or the Arg (R) in the GFFKR motif to Ala (A) rendered LFA-1 constitutively active. Mutation of the Lys (K) did not affect LFA-1 adhesion to ICAM-1. These findings indicate that the GFFKR motif maintains the low adhesive state of LFA-1, possibly by restraining the receptor conformation. We further demonstrate that the alpha subunit cytoplasmic domain and the conserved GFFKR motif are also required for efficient formation of LFA-1 alphabeta heterodimers.