Sphingosine 1-phosphate (SPP), a sphingolipid second messenger implicated in the mitogenic action of platelet-derived growth factor [Olivera, A. and Spiegel, S. (1993) Nature (London) 365, 557-560], induced rapid reorganization of the actin cytoskeleton resulting in stress-fibre formation. SPP also induced transient tyrosine phosphorylation of focal adhesion kinase (p125(FAK)), a cytosolic tyrosine kinase that localizes in focal adhesions, and of the cytoskeleton-associated protein paxillin. Exoenzyme C3 transferase, which ADP-ribosylates Rho (a Ras-related small GTP binding protein) on asparagine-41 and renders it biologically inactive, inhibited both stress-fibre formation and protein tyrosine phosphorylation induced by SPP. Thus Rho may be an upstream regulator of both stress-fibre formation and tyrosine phosphorylation of p125(FAK) and paxillin. Pretreatment with PMA, an activator of protein kinase C (PKC), inhibited the stimulation of stress-fibre formation induced by 1-oleoyl-lysophosphatidic acid (LPA) but not that by SPP. Similarly, PMA also decreased LPA-induced tyrosine phosphorylation of p125(FAK) and paxillin without abrogating the response to SPP. Thus PKC is involved in LPA- but not SPP-dependent signalling. The polyanionic drug suramin, a broad-specificity inhibitor of ligand-receptor interactions, did not inhibit either the mitogenic effect of SPP or its stimulation of tyrosine phosphorylation of p125(FAK). However, suramin markedly inhibited these responses induced by LPA. These results suggest that in contrast with LPA, SPP may be acting intracellularly in Swiss 3T3 fibroblasts to stimulate tyrosine phosphorylation of p125(FAK) and paxillin and cell growth.