Within the alveolar space pulmonary surfactant is converted from the surface active large aggregates (LA) to the inactive small aggregates (SA). This conversion is affected by a change in surface area, lung injury, breathing pattern, and protease activity. This study examined the effect of N-nitroso-N-methylurethane-induced acute lung injury on aggregate conversion in mechanically ventilated and spontaneously breathing rabbits. Both the in vitro surface area cycling techniques and the in vivo technique of intratracheally injecting radiolabeled LA were used for analyzing aggregate conversion. Mechanical ventilation of injured lungs resulted in increased aggregate conversion and increased surfactant aggregate ratios compared with controls. Spontaneously breathing injured animals had aggregate conversion and aggregate ratios that were not significantly different from controls. In vitro aggregate conversion was slower for LA obtained from injured animals compared with normal animals. We conclude that the mechanical stress of mechanical ventilation results in increased aggregate conversion and aggregate ratios. Furthermore, in vitro conversion of isolated LA does not necessarily reflect the conversion of aggregates within the alveoli.