Expression and mutagenesis of the catalytic domain of cGMP-inhibited phosphodiesterase (PDE3) cloned from human platelets

Biochem J. 1997 Apr 1;323 ( Pt 1)(Pt 1):217-24. doi: 10.1042/bj3230217.

Abstract

We have used reverse transcriptase PCR, platelet mRNA and degenerate primers based on platelet peptide sequences, to amplify a fragment of platelet cGMP-inhibited phosphodiesterase (cGI-PDE; PDE3). Sequence analysis of this clone established that both the platelet and the cardiac forms of PDE3 were derived from the same gene (PDE3A). A RT-PCR product representing the C-terminal half of platelet PDE3 cDNA and corresponding to amino acid residues 560-1141 of the cardiac enzyme, was cloned and expressed in Escherichia coli cGI-PDEDelta1. Further deletion mutants were constructed by removing either an additional 100 amino acids from the N-terminus (cGI-PDEDelta2) or the 44-amino-acid insert characteristic of the PDE3 family, from the catalytic domain (cGI-PDEDelta1Deltai). In addition, site-directed mutagenesis was performed to explore the function of the 44-amino-acid insert. All mutants were evaluated for their ability to hydrolyse cAMP and cGMP, their ability to be photolabelled by [32P]cGMP and for the effects of PDE3 inhibitors. The Km values for hydrolysis of cAMP and cGMP by immunoprecipitates of cGI-PDEDelta1 (182+/-12 nM and 153+/-12 nM respectively) and cGI-PDEDelta2 (131+/-17 nM and 99+/-1 nM respectively) were significantly lower than those for immunoprecipitates of intact platelet PDE3 (398+/-50 nM and 252+/-16 nM respectively). Moreover, N-terminal truncations of platelet enzyme increased the ratio of Vmax for cGMP/Vmax for cAMP from 0.16+/-0.01 in intact platelet enzyme, to 0.37+/-0.05 in cGI-PDEDelta1 and to 0.49+/-0.04 in cGI-PDEDelta2. Thus deletion of the N-terminus enhanced hydrolysis of cGMP relative to cAMP, suggesting that N-terminal sequences may exert selective effects on enzyme activity. Removal of the 44-amino-acid insert generated a mutant with a catalytic domain closely resembling those of other PDE gene families but despite a limited ability to be photolabelled by [32P]cGMP, no cyclic nucleotide hydrolytic activities of the mutant were detectable. Mutation of amino acid residues in putative beta-turns at the beginning and end of the 44-amino-acid insert to alanine residues markedly reduced the ability of the enzyme to hydrolyse cyclic nucleotides. The PDE3 inhibitor, lixazinone, retained the ability to inhibit cAMP hydrolysis and [32P]cGMP binding by the N-terminal deletion mutants and the site-directed mutants, suggesting that PDE3 inhibitors may interact exclusively with the catalytic domain of the enzyme.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3',5'-Cyclic-AMP Phosphodiesterases / chemistry*
  • 3',5'-Cyclic-AMP Phosphodiesterases / genetics
  • Affinity Labels / metabolism
  • Amino Acid Sequence
  • Base Sequence
  • Blood Platelets / enzymology*
  • Blotting, Western
  • Cloning, Molecular
  • Cyclic Nucleotide Phosphodiesterases, Type 3
  • Humans
  • Models, Chemical
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Polymerase Chain Reaction
  • Restriction Mapping
  • Sequence Deletion

Substances

  • Affinity Labels
  • 3',5'-Cyclic-AMP Phosphodiesterases
  • Cyclic Nucleotide Phosphodiesterases, Type 3
  • PDE3A protein, human