The type I and type II receptors for transforming growth factor-beta (TGF-beta) are structurally related transmembrane serine/threonine kinases, which are able to physically interact with each other at the cell surface. To help define the initial events in TGF-beta signaling, we characterized the kinase activity of the type II TGF-beta receptor. A recombinant cytoplasmic domain of the receptor was purified from Escherichia coli and baculovirus-infected insect cells. Anti-phosphotyrosine Western blotting demonstrated that the type II receptor kinase can autophosphorylate on tyrosine. Following an in vitro kinase reaction, the autophosphorylation of the cytoplasmic domain and phosphorylation of exogenous substrate was shown by phosphoamino acid analysis to occur not only on serine and threonine but also on tyrosine. The dual kinase specificity of the receptor was also demonstrated using immunoprecipitated receptors expressed in mammalian cells and in vivo 32P labeling showed phosphorylation of the receptor on serine and tyrosine. In addition, the kinase activity of the cytoplasmic domain was inhibited by the tyrosine kinase inhibitor tyrphostin. Tryptic mapping and amino acid sequencing of in vitro autophosphorylated type II receptor cytoplasmic domain allowed the localization of the sites of tyrosine phosphorylation to positions 259, 336, and 424. Replacement of all three tyrosines with phenylalanines strongly inhibited the kinase activity of the receptor, suggesting that tyrosine autophosphorylation may play an autoregulatory role for the kinase activity of this receptor. These results demonstrate that the type II TGF-beta receptor can function as a dual specificity kinase and suggest a role for tyrosine autophosphorylation in TGF-beta receptor signaling.