L-2-Hydroxyisocaproate dehydrogenase (L-HicDH) is characterized by a broad substrate specificity and utilizes a wide range of 2-oxo acids branched at the C4 atom. Modifications have been made to the sequence of the NAD(H)-dependent L-HicDH from Lactobacillus confusus in order to define and alter the region of substrate specificity towards various 2-oxocarbonic acids. All variations were based on a 3D-structure model of the enzyme using the X-ray coordinates of the functionally related L-lactate dehydrogenase (L-LDH) from dogfish as a template. This protein displays only 23% sequence identity to L-HicDH. The active site of L-HicDH was modelled by homology to the L-LDH based on the conservation of catalytically essential residues. Substitutions of the active site residues Gly234, Gly235, Phe236, Leu239 and Thr245 were made in order to identify their unique participation in substrate recognition and orientation. The kinetic properties of the L239A, L239M, L236V and T245A enzyme variants confirmed the structural model of the active site of L-HicDH. The substrates 2-oxocaproate, 2-oxoisocaproate, phenylpyruvate, phenylglyoxylate, keto-tert-leucine and pyruvate were fitted into the active site of the subsequently refined model. In order to design dehydrogenases with an improved substrate specificity towards keto acids branched at C3 or C4, amino acid substitutions at positions Leu239, Phe236 and Thr245 were introduced and resulted in mutant enzymes with completely different substrate specificities. The substitution T245A resulted in a relative shift of substrate specificity for keto-tert-leucine of more than 17000 compared with the 2-oxocaproate (kcat/KM). For the substrates branched at C4 a relative shift of up to 500 was obtained for several enzyme variants. A total of nine mutations were introduced and the kinetic data for the set of six substrates were determined for each of the resulting mutant enzymes. These were compared with those of the wild-type enzyme and rationalized by the active site model of L-HicDH. An analysis of the enzyme variants provided new insight into the residues involved in substrate binding and residues of importance for the differences between LDHs and HicDH. After the protein design project was complete the X-ray structure of the enzyme was solved in our group. A comparison between the model and the experimental 3D structure proved the quality of the model. All the variants were designed, expressed and tested before the 3D structure became available.